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Abstract

We develop a methodology to ensure that the stress tensor, regardless of its number of

independent components, can be reduced to an exactly equivalent one which has the same

number of independent components as the surface force. It is applicable to the momentum

balance if the shear viscosity is constant. A direct application of this method to the energy

balance also leads to a reduction of the dissipation rate of kinetic energy. Following this

procedure, signi�cant saving in analysis and computation may be achieved. For turbulent


ows, this strategy immediately implies that a given Reynolds stress model can always

be replaced by a reduced one before putting it into computation. Furthermore, we show

how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent

Lamb vector alone, which is much simpler. As a �rst step of this alternative modeling

development, we derive the governing equations for the Lamb vector and its square. These

equations form a basis of new second-order closure schemes and, we believe, should be

favorably compared to that of traditional Reynolds stress transport equation.
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1. Introduction

Fluid dynamics needs very intensive analyses and computations, and a reduction of

this work can be very useful. In this paper, we demonstrate that this can be achieved for the

balance of momentum and energy, for both laminar and turbulent 
ows, and this reduction

has roots in the very fundamental nature of 
uid motion. Furthermore, our analysis

suggests that the mean turbulent Lamb vector has advantages over the traditional Reynolds

stress; its transport equation is derived as a foundation for an alternative approach in

turbulence modeling.

2. Reduced Stress Tensor for Newtonian Fluid

Let S and S0 be two arbitrary di�erentiable second-rank tensors. If their di�erence is

a divergence-free tensor, there must be r�S = r�S0 = FFF , say. We call S and S0 the tensor

potential of the vector FFF ; clearly, the number of potentials for FFF is in�nite. This gives us

a chance to construct the simplest potential, whose number of independent components

should be the same as that of FFF . As a theorem, this construction is achievable through

making the Stokes-Helmholtz (S-H) decomposition for FFF :

FFF = r�+r�AAA; r �AAA = 0; (1)

where � and AAA are the scalar and vector S-H potentials of FFF , and have altogether three

independent components. It is well known that decomposition (1) exists globally for any

integrable FFF . Now, let I be the unit tensor and write

bS = �I+ I�AAA; or bSij = ��ij � �ijkAk; (2)

then r � bS is nothing but (1). This bS is exactly the desired three-component tensor

potential of FFF , which we refer to as the S-H tensor potential of FFF . Note that it consists

of an anisotropic part and a skew-symmetric part, whereas itself is neither symmetric nor

skew-symmetric.

Since the S-H decomposition stands at the center of our reasoning, we make some

remarks on it. It is well known that for a given vector FFF , �nding its potentials � and AAA

amounts to solving a scalar and a vector Poisson equations, of which the integral repre-

sentation is in terms of the Green's function of Laplace operator. However, this classical

representation is often inconvenient in practice. If the 
ow is unbounded or with periodic

boundary conditions, � and AAA can of course be easily found in the Fourier space; but the

best approach is using the helical-wave decomposition (HWD), with the eigenvectors of

the curl operator forming a complete orthonormal basis. In fact, HWD is nothing but a

further sharpening of the S-H decomposition.1 Whereas the existing theory and application

of HWD have been con�ned to unbounded 
ow, for which the basis vectors can be easily

obtained in Fourier space or in terms of some special functions,1;2;3 it has been proven by
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Yoshida and Giga4 that the complete orthonormal HWD basis also exists in an arbitrary

bounded domain. In this paper we shall not go into these details (see Wu et al.5); rather,

we simply assume that, in any 
ow domain and for any vector of our concern, the splitting

of this vector into the longitudinal (curl-free) part and transverse (divergence-free) part

can be obtained readily using the procedures discussed above.

Now, consider a Newtonian 
uid, of which the viscous stress tensor is proportional to

the strain-rate tensor D = DT , where the superscript T means transpose. Let # = r � uuu
and !!! = r � uuu be the dilatation and vorticity, respectively, and 


 = �


T

be the anti-

symmetric spin tensor such that ruuu = D + 


. Moreover, let � and � be the �rst and

second dynamic viscosities. Then, it is easily seen that there exists an identity6�8

D = #I +


 �B;

where

B � #I�ruuuT with r �B = 0 (3a; b)

is known as the surface-strain-rate tensor (Dishington9, whose de�nition di�ers from (3a)

by a transpose). Therefore, from the Cauchy-Poisson constitutive equation one obtains an

intrinsic triple decomposition of the stress tensor T:

T = ��I+ 2�


� 2�B; (4a)

where

� � p � (� + 2�)# (4b)

is the isotropic part of T. Correspondingly, we have an intrinsic triple decomposition of

the surface stress (the traction) at any surface element of unit area in the 
uid or on its

boundary:

ttt � nnn �T = ��nnn+ ��� + ttts; (5a)

where ��nnn is the normal stress due to compression/expansion, and

��� � �!!! � nnn; ttts � �2�nnn �B (5b; c)

are the shear stress and stress due to the resistance of the viscous 
uid surface to its strain,

respectively.

It is now evident that, as long as � = constant, then �B is divergence-less and can well

be dropped o� from the momentum equation. What left is precisely the three-component

S-H tensor potential bT = ��I+ 2�


; (6a)

such that the Navier-Stokes equation with an external body force �fff ,

�
Duuu

Dt
� �fff = r � bT = �r��r� (�!!!) (6b)
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represents a natural S-H decomposition of the total body force (inertial plus external).

Although equation (6b), in particular its incompressible version, has been known for

long time,10;11 the concept of reduced stress tensor (6a) is not widely appreciated, and its

application in practice has not been fully explored. The only exception known to the authors

is the work of Eraslan et al.12, who, in developing a numerical method, noticed that some

components of Tij played no role in their scheme and simply ignored them. A cubic mesh

box, originally having 27 control points, was thereby simpli�ed to having 7 points only.

This reduced the CPU time for estimating stress by 70%, and for the overall computation,

by 40%. This example indicates that the saving due to intentionally replacing T by bT can

be very signi�cant.

3. Self Balance of Surface Strain and Reduced Dissipation

In contrast to the momentum balance with constant �, where the surface-strain tensor

B simply plays no role, we now show that in the energy balance it does play a role but is

always self-balanced. This interesting point has never been noticed before.

The conventional energy balance reads

�
D

Dt

�
1

2
juuuj2

�
= �fff � uuu+ #p +r � (T � uuu)� �; (7)

where

� = 2�Dij(Tij + p�ij ) = �#2 + 2�DijDij (8a)

is the dissipation function. Using an identity of Truesdell,10 we found

� = (�+ 2�)#2 + �!2 �r � (2�B � uuu): (8b)

Therefore, substituting T = bT � 2�B into (7), the terms containing B are precisely

canceled. This result implies:

Theorem. For Newtonian 
uid with constant shear viscosity, the work rate done by the

viscous resistance to surface strain is locally balanced by its own dissipation rate.

Like the skin-friction, the viscous resistance of a 
uid-surface element to its strain

usually does negative work, and hence its dissipation, �r� (2�B �uuu) � �s, say, is positive.

But, this may not be always so.

Now, due to the theorem as well as (6), for constant �, the balance of both momentum

and energy of a Newtonian 
uid can always be replaced by that of a �ctitious 
uid which

has no surface strain at all. Indeed, the energy balance now reads

�
D

Dt

�
1

2
juuuj2

�
= �fff � uuu+ #p�r � (uuu� + �!!! � uuu)� b�; (9a)
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or, for any material volume V ,

D

Dt

Z
V

1

2
�juuuj2dV =

Z
V

(�fff � uuu+ #p)dV +

Z
@V

uuu �btttdS �
Z
V

b�dV; (9b)

where b� � (�+ 2�)#2 + �!2 � 0 (10)

is the reduced dissipation, and

bttt = nnn � bT = ��nnn+ �!!! �nnn

is the reduced stress due to compressing and shearing processes only. These equations can

also be directly derived from the inner product of (6b) and uuu.

Care must be taken when providing interpretations for Eqs. (9)-(10). We �nd that

there is an exact cancelation between the portion of the dissipation and that of the work

rate done by surface stress. Although computation e�orts can be reduced by using the

reduced stress, it would be misleading to take the \reduced dissipation" as the \total

dissipation". Otherwise, for example, even a solid-like rotation (say, occurred near the

axis of a vortex) would have a dissipation. This is of course not the real physics. Like the

case of stress tensor, the true dissipation for incompressible 
uid is still given by

� = b� +�s; with b� = �!2; �s = 2�r � (uuu � ruuu):

With the above explanation, our results (9) and (10) imply another signi�cant sim-

pli�cation and some further physical insight. While it is known that for unbounded 
ow

or under periodic boundary conditions the total dissipation in V can be written as

Z
V

�dV =

Z
V

[(�+ 2�)#2 + �!2]dV =

Z
V

b�dV; (11)

so that the integration volume can be reduced to the regions with nonzero !!! and #. For

example, for a Rankine vortex, the total dissipation can be computed based on (7a),

which requires integration of 2�DijDij over the whole irrotational domain, but, by (10)

it becomes an integration of the constant �!2 over the solid vortex core. Now we have

shown that, with constant � and the reduced dissipation function, the boundary-condition

dependence of (11) can be removed.

Based on the fact that for incompressible 
ow the viscous force depends on the

skew-symmetric part of ruuu but the dissipation rate (8a) depends on its symmetric part,

Largestr�om13 noticed the existence of potential 
ow with viscous dissipation. He illus-

trated the situation by a steady axisymmetric 
ow driven by a rotating cylinder of radius

a and tangent velocity V (equivalent to the solid core of a Rankine vortex). The 
ow
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is irrotational but with a local dissipation rate � = 4�V 2a2=r4 and a total dissipation

4��V 2. We now further see that this dissipation is exclusively from the surface strain,

and is solely balance by the work rate done by the resistance to that strain, which is in

turn provided by the rotating cylinder with a total power input 4��V 2 = �!2 � �a2 to

keep the 
ow steady. Note that on a rotating solid boundary with angular velocity WWW ,

like the above cylinder surface, the stress ttts due to surface strain can always be absorbed

into the shear stress ��� , as long as the vorticity !!! in (5b) is replaced by a relative vorticity

!!!r = !!!� 2WWW .7 Therefore, the work down by the cylinder surface to retain the 
ow can be

explained as from either the surface-stain stress ttts or the shear stress ��� .

It should be emphasized that the stress ttts due to surface strain may appear should we

go beyond the balance of momentum and energy.6;14 Its most important appearance is in

the stress balance on an open 
uid surface element. Speci�cally, on a 
uid-
uid interface or

free surface ttts plays a crucial role:
8 its normal component joins the balance with pressure

and surface tension, while its tangent components are solely responsible for balancing the

interfacial tangent vorticity. Note, however, this appearance of ttts is relevant only to the

dynamic boundary condition on such an interface only; thus, Eqs. (6) and (9a,b) still hold.

As a result, saving is still achieved even with an interface as the 
ow boundary.

As noted already, eqs (6) and (9a,b) do not apply to 
ow with variable shear viscosity,

where a direct coupling between momentum balance and thermodynamics adds additional

terms to the S-H tensor potential (6), which, although can always be obtained, do not have

the above neat form.

4. Turbulent Stress Tensor versus Turbulent Force

We now turn to turbulent 
ow. We �rst show how to achieve a computational saving

for a given model of turbulent stress tensor, say �ij = �uiuj = �ji. Here and below, unless

stated di�erently, uuu is referred to 
uctuating velocity, and so are its derivatives. The

overline means ensemble average. Once again, in the mean turbulent momentum equation

and energy equation [or �ltered equation if large-eddy simulations (LES) is considered],

what counts is only the turbulent force �ij;i = fj , say; so we may similarly replace �ij by a

three-component S-H tensor potential b�ij , which amounts to �nding the S-H decomposition

of fff .

As an illustration, consider an unbounded or spatially periodic 
ow so that in the

Fourier space spanned by the wave vector kkk (where we use �; �; 
; ::: = 1; 2; 3 to denote

Cartesian components), there is

f�(kkk) = ik����(kkk); i =
p�1; (12)

and (1) becomes

f�(kkk) = i[k��(kkk) + ���
k�A
(kkk)]: (13)
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To obtain �(kkk) and A
(kkk) from the given ���(kkk), note that the vector identity in physical

space

r2fff = r(r � fff) �r� (r� fff)
implies

k2f�(kkk) = k�k�f�(kkk) + ���
�
��k�k�f�(kkk):

Comparing this and (13), it follows that

i�(kkk) =
k�f�(kkk)

k2
; iA
 = �
��

k�f�(kkk)

k2
:

Therefore, from (12) we obtain the reduced stress tensor

b���(kkk) = k�2[k
k���
(kkk)��� + k�k
�
�(kkk) � k�k
�
�(kkk)]: (14)

It can be easily checked that

ik�b���(kkk) = ik����(kkk) = f�(kkk):

By using (14), any models of the turbulent stress tensor ���(kkk), linear
15;16 or nonlinear17�21,

can be reduced to a S-H tensor potential before being put into numerical computation. As

noted earlier, in principle this procedure can be applied to any bounded domain as long

as the HWD basis therein has been established.

Although (14) can already bring great computational saving, however, it does not

simplify theoretical analysis since one still has to model the full Reynolds stress ���. We

thus propose a more thorough approach, which would lead to a signi�cant theoretical

simpli�cation in turbulence modeling as well. The basic idea is that as long as an S-

H decomposition of fff is obtained, it is su�cient to directly model the three-component

turbulent force, rather than the much more complicated six-component turbulent stress

tensor.

We assume the 
ow is incompressible for simplicity. The turbulent force can be

expressed in terms of the \vorticity form":22

fff = �r � (uuuuuu) = �rK � lll; (15)

where

K � 1

2
juuuj2 and lll � !!! � uuu (16a; b)

are the mean turbulent kinetic energy and mean turbulent Lamb vector, respectively.

Obviously, K is a part of the scalar potential of fff , and the other part comes from the

curl-free longitudinal part of lll. Therefore, as long as we have split lll into a longitudinal
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part, lll
0

= r�, and a transverse part, lll?, then we immediately arrive at the desired

decomposition of turbulent force:

fff = �r(K + �) � lll?; (17)

which sharpens (15). Moreover, since for incompressible 
ow there is

r � lll = �r2h0 = �r2K;

where h0 is the stagnation enthalpy, it follows that if we de�ne

 � �+K; (18)

then

r2 = 0; (19)

of which the solution depends on boundary values of � and K only. Once these values are

given, the internal values ofK in the 
ow domain can be inferred from that of �. Therefore,

the problem of modeling turbulent force exclusively amounts to modeling the mean turbulent

Lamb vector. This observation further con�rms that the Lamb vector is the key in nonlinear


uid dynamics including anisotropic turbulence; a rational mathematical reduction is often

associated with a sharper physical insight.

5. Reynolds Stress Transport versus Lamb Vector Transport

The second-order closure models (full Reynolds stress transport) represents the highest

level of closure currently feasible in practical Reynolds-average computations. In prin-

ciple, these models account for more turbulence physics than lower-level models, e.g.,

two-equation models. As reviewed by Speziale16, full Reynolds-stress transport may be

used as a starting point to deduce improved two-equations models under the equilibrium

limit of homogeneous turbulence.

The previous section clearly demonstrated that the problem of Reynolds-stress mod-

eling can be cast to the modeling of turbulent Lamb vector. Thus, the �rst step towards

directly modeling turbulent force at the level of second-order closure is to derive the trans-

port equation for lll, which is much simpler than that of the full Reynolds stress.

From the exact Navier-Stokes equation and vorticity equation (the notations now

stand for instantaneous quantities), it follows that the Lamb-vector transport equation

reads
@lll

@t
+ uuu � rlll + lll � ruuu� �r2lll = QQQ; (20a)

where

QQQ � rh0 � !!! � 2�!!!;i � uuu;i (20b)
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is the source. The �rst term of (20b) is an inviscid coupling between longitudinal and

transverse parts, but the second does not represent the dissipation of lll at all. We found

that

�2�!!!;l � uuu;l = �2�r � (!!! �D) +
1

2
(��1rb�+ �lll!); lll! � (r�!!!) �!!!; (21)

where b� = �!2 is the reduced dissipation.

In order to gain more understanding of the evolution of Lamb vector, let us consider

its square, characterized by J � l2=2. It is easily shown that the J-equation reads

@J

@t
+ uuu � rJ + lll �D � lll � �r2J = ��rlll : rlll +QJ ; (22a)

where : means twice contraction so that �rlll : rlll is the J-dissipation, and

QJ � lll �QQQ = (H!!! � !2uuu) � rh0 � �

2
(r!2 � ru2 + 4!!! �D �D �!!! � 4!!! �D � rH); (22b)

where H � !!! � uuu is the helicity. In (22b), all viscous terms are from the second term of

(20b). For two-dimensional 
ow QJ reduces to

QJ = �!2uuu � rh0 � �

2
r!2 � ru2: (23)

Note that for potential 
ow or Beltrami 
ow both (20a,b) and (22a,b) become the trivial

identity 0 = 0.

It is now clear that the structure of (20) and (22) is precisely the same as that of

the two-dimensional equations for vorticity gradient and its square, but subjected to the

forcing terms. Therefore, the existing studies on the latter (e.g., Novikov23) can well be

utilized to explore the behavior of (20) and (22). In particular, the increase of J is due to

the shrinking of the 
uid element rather than stretching. If the stretching is dominating

in a 
ow �eld, the integrated \Lamb-enstrophy" J must exponentially decrease by this

mechanism. This is consistent with the fact that as the turbulent eddies becomes smaller

and smaller due to stretching, the 
uctuating Lamb vector is also reduced | eventually

we have lll ' 0 for �ne-scale turbulence, which then becomes approximately homogeneous

and isotropic. Note that in (22b), the term �2�!iDijDjk!k is associated with vortex

stretching, which also provides a negative source (a sink) of J in a highly stretched vortical


ow, thus further reduces the Lamb vector in �ne-scale turbulence. Consequently, in the

turbulent force there remains the direct balance between the turbulent kinetic energy K

and reduced dissipation b� � �!2, which leads to the Kolmogorov law.

To investigate the e�ects of the mean 
ow on turbulence, we perform a Reynolds

average. The mean-
ow part is now denoted by capital letters and 
uctuating part is still
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presented by lower-case letters. After subtracting mean-
ow terms, the desired transport

equation for the mean 
uctuating Lamb vector reads

@lll

@t
+UUU � rlll + lll � rUUU � �r2lll = qqq1 + qqq2 + qqq3 (24)

On the right of (24), the �rst source is

qqq1 � rh0 �!!! � 2�!!!;i � uuu;i; (25)

which has the same structure as (20b) and involves second moments at the same point.

The second source reads

qqq2 � �(uuu � rLLLy +LLL
y � ruuu); (26)

which contains the interaction between the mean 
ow and some second moments. Here,

LLL
y � !!! �UUU +


� uuu

is a \quasi-Lamb vector" in the sense that its �rst term is the analogy of Coriolis force

acted on the mean 
ow caused by 
uctuating vorticity, and the second term is that acted

on 
uctuating 
ow caused by the mean vorticity. Finally, the third source

qqq3 � �(uuu � rlll+ lll � ruuu) (27)

is a triple correlation and surely needs modeling. Equation (24) indicates that lll is advected

and stretched-turned by the mean 
ow �eld.

The structure of qqq1 clearly implies that the pressure-strain term in common modeling

is now reduced to the correlation of rh0 and !!!. Because the variation of h0 is expected to

be milder than h, and since only the regions with !!! 6= 0 needs be modeled, it is expected

that some troublesome aspects of pressure-strain modeling16 could be bypassed. The

second term of (25), having been identi�ed not as the dissipation, needs some attention.

Although it is a viscous e�ect, it might not be completely negligible since the derivatives

of 
uctuating vorticity and velocity are involved. A further analysis of qqq1 could be made

by looking at (22).

On the other hand, we see in (24) that qqq2, the triple correlation, and the advecting-

stretching-turning of lll by the mean 
ow, have the same theoretical structure since they

come from the single root; but their roles are very di�erent. A further study of this type

of structure is desirable.

Obviously, various second moments are not equally important, and one can only select

the most relevant one to derive its transport equation and close the turbulence modeling

thereon. This is the basic spirit of second-order closure. In the usual approach, one takes

the transport equation of Reynolds stress, in which some other second moments, such as
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the pressure-stain correlation and dissipation-rate correlation, have to be modeled. Much

e�orts have been paid to deal with some redundant quantities and complexity because the

full Reynolds stress is reducible. Now the tensorial Reynolds-stress equation is reduced to

the vectorial mean Lamb-vector equation, in which the remaining quantities can no longer

be further reduced. In this sense, we may call the above approach as an irreducible second-

order closure. An obvious feature of this irreducibility is that the terms to be modeled are

nonzero only in those regions where !!! 6= 0; or, approximately, the regions with high peak

of 
uctuating vorticity. This is precisely the essence of turbulence as randomly stretched

vortices.

6. Conclusion

In this theoretical paper we systematically explored the concept and application of

reduced stress tensor and dissipation function, showing that they may bring signi�cant

savings in analysis and computation. The development is solely based on the classic Stokes-

Helmholtz decomposition, or its modern sharpening, the helical-wave decomposition.

In particular, for turbulent 
ows we propose that the study and modeling of Reynolds

stress tensor could be reduced to that of the mean turbulent Lamb vector alone, of which

the governing equation is closely similar to that for the two-dimensional vorticity gradient.

This equation would be a new basis of irreducible second-order closure schemes. A numer-

ical examination of the budget and spectra of terms in this equation, including those that

need be modeled, is being undertaken and will be reported separately.
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